Graphical user interfaces versus batch files: Why are batch files so uncool?

(J. Hoppe)

Batch file-based operations are a little bit “out of fashion”, and there are reasons for it (yes, I’m talking about Microsoft’s Win*-OSses only here). Almost every commercially available software product uses GUI-based administration tools. For example the ORACLE RDBMS gives you a lot of „adminstration consoles“, which allow you to create databases, compile SQL-scripts, generate network connections or perform backup tasks. In the old days, all those tasks where done with scripts, which performed complex tasks by calling lots of ORACLE commandline-based tools with differing parameters. As another example, the compilation of big software packages with C-compilers was traditionally achieved by systems of makefiles, where you could set lots of parameters to adapt your generated code to various aspects like hardware environments or operation systems versions. All those settings are now part of GUI-bases compiler surfaces, like Microsoft Visual Studio or Borland/Inprises compilers.

I’ll certainly not promoted the use of batch file operations over GUIs: GUI based configuration tools have a lot of advantages over batch file systems, for example a very rapid learning curve for users (and time is money in our business). But under certain circumstances, there are specific problems. For example, lets look at the process of learning how to create a ORACLE database and then install it in several instances at different customer servers. While you develop your applications, you only need one database, and you are certainly create it quickly with the ORACLE GUI-based tools.

But when you finished development, you have to install more similar databases for your quality management and for your customers. So since you have to generate the same database over and over again under different environments, you have to write down on a sheet of paper which tool to use at which step and which parameter you have to enter in which mask. Finally you find yourself in a situation where you use tools and enter values into GUI masks according to a written documentation, over and over again. Furthermore, your sheet of paper will not only contain a list of tools and a list of steps you have to click through, but also instruction what to do and what to enter for different variants of your process (for example when creating a ORACLE database: in which masks you have to enter the current SID of your database, or when you‘re writing a Windows-device driver: in which CPP-sources, inf-files, resource-files and registry settings you have to enter the current version numbers of your driver. So either you write this documentation very carefully, or you’re the only person in your company which knows how to do it. This is job security, but you turned indeed yourself into a command interpreter! Do you remember that time is money? At this point, it‘s time to read documentation again, inform yourself about the command line tools of your system and reprogram your processes into a system of batch files, that can be run non-interactively and contain all the knowledge you gathered about your processes.

But if you switch to batch files, you suddenly are in stone-age–like software environment (and this is the reason why we only use batch files if it REALLY pays off):

· You have (only under Microsoft OSses) to deal with a very limited set of programming elements. COMMAND.COM lacks complex variable substitution, expression evaluation, nested procedure calls etc.

· It’s not a good idea to write one batch file for one process you want to automate. More likely you will write a set of basic or atomic batch files, who in turn will be used by „high level“ batch files. For example: managing ORACLE databases, you always need scripts to startup and shutdown a database. So you will write a „DBSHUT.BAT“ and a „DBSTART.BAT“ , and you will use them in different maintanance batch files as a „CALL DBSTART:BAT“ or „CALL DBSHUT.BAT“.
So it‘s a job for you to keep „atomic“ and „highlevel“ scripts organized.

· There is a essential need to adapt your batch files to different external conditions. The effort to develop a batch file based installation or compilation process pays off only if you indicate which parameters can be modified (for example, the server name your ORACLE database runs on, or the version number of your program). Continuing the example: you will NOT write a „DBSTART_ORCL.BAT“ and a „DBSTART_MYDB.BAT“, but you will write a generic DBSTART.BAT which accepts the name of the database to start as a command line parameter (these are really news, aren‘t they?).
But there are lots of limitations. Batch files can easily be programmed to run with different sets of parameters: you simply list them in the command line and evaluated them with „%1“ syntax. But this will only allow you to parameterize .BAT files. In a complex environment, you have to insert parameters into non-BAT files too: Under ORACLE, there are SQL-scripts, INIT.ORA, LISTENER.ORA and TNSNAMES.ORA; under C-software development , there are C-sources, registry export files in ASCII format, INF-files for the installer, resource scripts, and perhaps own ini-Files. Sometimes there is a parameter substituting mechanism for some kind of files (environment variables can be evaluated in SQL-scripts, C-source code can be modified with #define in the compiler command line), but sometimes there is none. If you must, you will generate those „not –parameterizable“ file types by special batch files, which use a lot of „ECHO text >> myfile“, because this way you can insert the current value of a batch command line parameters into your target file (Try to maintain this code! Try to generate a file line which contains a „>“, or a „%“!). But in every case, you have to deal with very heterogenous and very limited variable substitution (just remember the need to set the „environment size“ under COMMAND.COM of Win9x!).

· If you run your files, you need to control the success. So you need a log file, which ideally contains the output of every batch file you ran and every tool you used.. And again there are many different styles for the output of logging information: some tools write log file to a fixed location, as given by the logfile policy of your software (under ORACLE, log files are written to product specific positions. So if you run a batch file which uses different tools, the according logfiles are spread all over your Oracle-directory tree).
Some tools generate output to a user-defined file. Some tools generate output to stdout, to stderr, or directly to the DOS-video screen. So its nearly impossibly to control the success of a complex batch file run.

To bypass all those limitations, I wrote the tool SCRIPTOR ... see its documentation. It groups lists of single, atomic script into logical lists (“tasks” and “jobs”), which can be executed at will. It keeps sets of parameters and inserts them into the script source code just before running them. Different sets of parameter values can be saved as “configurations”. With ASP/JSP - like “<%..%>”-syntax you can insert JavaScript expressions and even code generating programs into every ASCII-file. And after the run, you have one single log file for all output (console or log file) of all scripts, SCRIPTOR searches for error- or success expression in it.
As mentioned before between the lines, I use SCRIPTOR in two different, big projects: The administration of a cluster of ORACLE databases (15 instances in the meantime), and the compilation of complex Windows device driver (which must be build in 26 variants for 5 hardware types and 3 operating systems). Once I went through the process of making clean scripts and a good configuration hierarchy, the boost of productivity was amazing. Try it!

